mTOR e le altre vie di trasduzione del segnale: Implicazioni cliniche

Giampaolo Tortora

Cattedra di Oncologia Medica
UOC Oncologia Medica dU
Facoltà di Medicina e Chirurgia e
Azienda Ospedaliera Universitaria Integrata
Verona

HER-dependent signalling pathways

mTOR integrates the signals of nutrients and growth factors

- mTOR senses availability of amino acids, metabolic fuel, and energy
- Nutrients and energy stores are essential for protein synthesis, cell growth, proliferation, and survival
- mTOR activation can increase the expression of nutrient transporters
- mTOR activation supports growth and survival by increasing cell access to nutrients and metabolic fuels

mTOR is a key machinery integrating the 3 pillars of growth: proliferation, angiogenesis and nutrient availability (bioenergetics)

mTOR pathway and inhibitors

Dancey, J. Nat. Rev. Clin. Oncol. 7, 209-219 (2010);

RAPAMYCIN INTERACTIONS WITH mTOR/FKBP12

Rapamycin and FKBP12 create a drug-receptor complex that interacts with mTOR

mTORC1 and mTORC2

mTOR Pathway is deregulated by mutations in cancer

- Normal cell growth, proliferation, and metabolism are maintained by a number of mTOR regulators^{1,2}
- Regulators of mTOR activity

nTOR activating
TOR deactivating

- Deregulation of mTOR can result in loss of growth control and metabolism^{1,3}
- Mutations in the mTOR pathway have been linked to specific cancers⁴

Averous and Proud. *Oncogene*. 2006;25(48):6423-6435. Mamane et al. *Oncogene*. 2006;25(48):6416-6422. Ellisen. *Cell Cycle*. 2005;4(11):1500-1502. Kaper et al. *Cancer Res*. 2006:66(3):1561-1569

mTOR Pathway is Deregulated in Breast Cancer

Mechanisms of resistance to anti-HER2 agents in breast cancer

Mechanisms of resistance	Factors involved		
Alterations in binding sites or RTK domain	MUC4 p95 ^{HER2} , ECD mutations of TK domain		
Overexpression of alternative ErbB ligands/ receptors dimerization	EGFR-HER2; HER2-HER3 etc. ErbB ligands (TGF α , EGF, HB-EGF, Heregulin etc.)		
Dimerization/interaction with other structurally unrelated receptors	IGF1-R MET		
Loss of downstream controllers	PTEN		
Activation of downstream signaling pathways	PI3K-Akt MEK MAPK/Erk mTOR		
Other factors	Notch Microenvironment Chemokine receptors and Integrins Metabolism Host-related factors Stem cells		

Mechanisms of SERM Resistance

mTOR transduces the signal triggered by E2 activation Growth factors including IGF-1, VEGF, ErbB **Estrogen deprivation** Plasma Membrane PI3K ERα **★** PI3K/mTOR activity AKT Proliferation/survival mTOR inhibition Proliferation m7.OR **★** ERα expression ♠ Apoptosis (estrogen hypersensitivity) S6K1 ERα 4E-BP1 ERα ERα elF-4E ΕRα ERα Protein synthesis ERα HALL BELLEVIER BELLEVIER Nuclear Membrane 🚜 Transcription ER-responsive element MMMM

^{1.} Bjornsti MA, et al. Nat Rev Cancer. 2004;34(5):335-348; 2. Crespo JL, et al. Microbiol Mol Biol Rev. 2002;66(4):579-591; 3. Huang S, et al. Cancer Biol Ther. 2003;2(3):222-232; 4. Mita MM, et al. Clin Breast Cancer. 2003;4(2):126-137; 5. Wullschleger S, et al. Cell. 2006;124(3):471-484; 6. Johnston SR. Clin Cancer Res. 2005;11(2 pt 2):889s-899s.

Dual mTOR and Aromatase Inhibition Induces Apoptosis in Breast Cancer Models

- RAD001 and letrozole combination preclinical studies in MCF7/Aro and T47D/Aro breast cancer cell lines expressing endogenous aromatase – striking combination effects were observed
 - Synergistic effect on inhibition of proliferation, decreased cell cycle progression and cell viability
 - Results show promise in treatment of estrogen-sensitive breast cancers that have not yet developed resistance

mTOR, obesity, insulin and aging

Absolute change in histoscore from baseline to day 15 for cyclin D1, PgR, pS6-235, and pS6-240 in the letrozole and letrozole-plus-everolimus arms.

Subgroup of patients with higher level of mTOR activity (pS6K) at baseline had a higher RR (82% vs 60%).

HER3 ENGAGED IN SIGNALING

Signal through class I PI3Ks

Aberrancies in the PI3K/AKT/mTOR pathway by breast cancer subtype

Subtype	Aberration	Frequency
All breast tumors	PIK3CA	10%-40%
	PTEN	~50%
	AKT	5%-24%
HR-positive tumors	PIK3CA	35%-40%
	PTEN	2%-4%
	AKT	2%-3%
Triple negative breast cancer	PIK3CA	8%-9%
	PTEN	15%-30%
	AKT	0%
HER2 amplified	PIK3CA	20%-25%
	PTEN	30%-40%
	AKT	0%

Biomarker analysis: PI3-Kinase

Exploring the relationship between PIK3CA mutation and Ki67, the small number of exon 9 allosteric domain mutants showed a relatively poor antiproliferative response to letrozole alone but a good response to letrozole plus everolimus

Feedback loops in mTOR pathway and inhibitors

Dancey, J. Nat. Rev. Clin. Oncol. 7, 209-219 (2010);

Inhibition of mTORC1 and mTORC2

PI3K/mTOR inhibitors being investigated for treatment of HR-positive advanced breast cancer

Agents	Phase	Patient population	Treatment	Clinicaltrials.gov
mTOR inhibitors				
Ridaforolimus II	II	ER+, HER2— advanced BC	Ridaforolimus + dalotuzumab vs exemestane vs ridaforolimus or	NCT01234857
	II	ER+, HER2— advanced BC	dalotuzumab monotherapy Ridaforolimus + dalotuzumab vs exemestane vs ridaforolimus +	NCT01605396
AZD2014	I	ER+ advanced BC	exemestane AZK2014 + fulvestrant	NCT01597388
PI3K inhibitors				
XL147	1/11	ER+, HER2- BC refractory to nonsteroidal AI	XL147 + letrozole	NCT01082068
BKM120 III I	Ш	ER+, HER2 – BC refractory to nonsteroidal AI	BKM120 + fulvestrant vs placebo + fulvestrant	NCT01610284
	I	HR+ advanced BC	BKM120 + letrozole Intermittent BKM120 + letrozole	NCT01248494
	I	ER+ stage IV BC	BKM120 + fulvestrant	NCT01339442
GDC-0941	II	HR+ advanced BC resistant to AI	GDC-0941 + fulvestrant vs placebo + fulvestrant	NCT01437566
Dual PI3K/mTOR inh	ibitors			
XL765	1/11	ER+, HER2 – BC refractory to nonsteroidal AI	XL765 + letrozole	NCT01082068
BEZ235	I	HR+ advanced BC	BEZ235 + letrozole	NCT01248494
PF-04691502	II	ER+, HER2 – early BC	PF-04691502 vs PF-04691502 + letrozole vs letrozole	NCT01430585
GDC-0980	II	HR+ advanced BC to AI	GDC-0980 + fulvestrant vs placebo + fulvestrant	NCT01437566

PIK3CA Genotype and a PIK3CA Mutation-Related Gene Signature and Response to Everolimus and Letrozole in ER Positive Breast Cancer

Relative change in % Ki67 from baseline to day 15 by treatment arm.

Increase of activated EGFR/HER2 dimers in tamoxifen-resistant breast cancer cells

The mTOR pathway is functionally linked to ErbB/HER and VEGF

Cross-Talk Between Signal Transduction and Endocrine Pathways

Phosphoproteome analysis identifies the mTOR effector p70S6K1 as a specific biomarker for lapatinib resistance

Phase III Study W2301: vinorelbine + trastuzumab ± everolimus in trastuzumab-resistant and taxane-pretreated HER2+ advanced breast cancer

^{*} Trastuzumab resistance defined as progression on adjuvant trastuzumab ≤ 12 months of last infusion, or progression while on or ≤ 4 weeks of receiving last dose of trastuzumab for metastatic disease

Dual mTORC1/2 and HER2 Blockade Results in Antitumor Activity in Preclinical Models of Breast Cancer Resistant to Anti-HER2 Therapy

Celina García-García¹, Yasir H. Ibrahim¹, Violeta Serra¹, Maria Teresa Calvo¹, Marta Guzmán¹, Judit Grueso¹, Claudia Aura², José Pérez¹, Katti Jessen³, Yi Liu³, Christian Rommel³, Josep Tabernero¹, José Baselga^{4,5}, and Maurizio Scaltriti^{4,5}

The simultaneous blockade of both PI3K/Akt/mTOR and ERK pathways obtained by combining lapatinib with INK-128 acts synergistically in inducing cell death and tumor regression in breast cancer models refractory to anti-HER2 therapy